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Recap  

Calculate  where  is the kernel matrix.

kernel Trick

Therefore, only inner products in the new feature space matter!

Kernel methods are exactly about computing inner products without explicitly computing. The exact form of ! is 
inessential ; all we need to do is know the inner products  .



Support Vector Machines (SVMs)  

One of the most commonly used classification algorithms
Allows us to explore the concept of margins in classification
Works well with the kernel trick
Strong theoretical guarantees

The function class for SVMs is a linear function on a feature map  applied to the datapoints: 
 . Note, the bias term b is taken separately for SVMs.

Margins: separable case, geometric intuition  

When data is linearly separable, there are infinitely many hyperplanes with zero training errpor:

The further away the separating hyperplane is from the datapoints, the better.

Margin for linearly separable data: Distance from the hyperplane to the point closest the the hyperplane.

Distance from a point to a hyperplane  ?

Assume the projection is  , then

Therefore the distance is  

For a hyperplane that correctly classifies  , the distance becomes 

Motivation:

Margin: the smallest distance from all training points to the hyperplane

The intuition "the further away the better" translates to solving:

Maximizing margin, rescaling. rescaling  by multiplying both by some scalar does not change the 
hyperplane.

Decision Boundary: 



We can thus always scale  s.t.  ( Multiplying original  by 
 )

The margin then becomes

SVM for separable data: "Primal" formulation  

For a separable training set, we aim to solve

This is non-convex!

This is equivalent to:

This is convex! Minimizing a convex function with convex constraint is convex.

SVM is thus also called max-margin classifier. The constraints above are called hard- margin constraints.

General non-separable case  

If data is not linearly separable, the previous constraint

is obviously not feasible.

Can't even match  , if not linearly separable.

Even if data is linearly separable, should we always separate it?

Forcing the classifier to classify all datapoints correctly might not be good.

If data is not linearly separable, the previous constraint  is not feasible. And 
more generally, forcing classifier to always classify all datapoints correctly may not be the best idea.

To deal with this issue, we relax the constraints to  norm soft-margin constraints:

where we introduce slack variables  .



Recall Hinge Loss:

In our case,  .

Why  Penalization?  

Hinge loss: 

Squared hinge loss: 

Difference:  grows much faster than  , squared hinge loss would really penalize getting some predictions 
wrong.

Because of this absolute value loss can be more robust to outlines in data compared to squared loss.

a  regression example: mean vs. median

If I have  

What is  ? 

What is  ?  

Median is more robust to outlines than mean.

For  regression:

We want  to be as small as possible. The objective becomes

where  is a hyper-parameter to balance the two goals.



Another view: In one sentence: linear model with  regularized hinge loss. (  is the penalization  ,  is the 
optimization problem  )

For a linear model  ,this means

Equivalent forms  

The formulation

In order to  , we should set  to be as small as possible, which is equivalent to:

This is also equivalent to:

And



With  . This is exactly minimizing  regularized hinge loss!

Optimization  

It is a convex (in fact, a quadratic) problem.

Thus can apply any convex optimization algorithms, e.g. SGD. 

There are more specialized and efficient algorithms, but usually we apply kernel trick, which requires solving 
the dual problem.

SVMs: Dual formulation & Kernel trick  

Recall SVM formulation for separable cases:

Can we use the kernel trick(dual) ?

Can we show that  is a linear combination of feature vectors  ?

Recall: by setting the gradient of  to be  :

Thus the least square solution is a linear combination of features of the datapoints!

Kernelizing SVM  

Claim: for the SVM problem, 

Informal proof:

Formulation as a linear model with  regularized hinge loss.

This is a convex problem.  GD will find a minimizer with any initialization (for some appropriate step size). 

Recall 



 ,  always lie in span of  (data), which means  ,  , for some 

If  , how can we use this?

This is equivalent to 

Dual form for for separable cases  

For the primal for the separable case, with some optimization theory (Lagrange duality, not covered in this 
class), we can show this is equivalent to,

Using the kernel function  for the mapping ", we can kernelize this!

No need to compute  , only focus on inner product. This is also a quadratic program and many efficient 
optimization algorithms exist.

For the primal for the general (non-separable) case:



The dual is very similar,

How do we predict given the solution  to the dual optimization problem?

Remember that,

A point with  is called a "support vector". Hence the name SVM.

To make a prediction on any datapoint ,

All we need now is to identify  .

Bias term  

First, let's consider the separable case. It can be shown (we will not cover in class), that in the separable case 
the support vectors lie on the margin.

 :

For general (non-separable case), For any support vector  with  , it can be shown that 
 (i.e. that support vector lies on the margin). Therefore, as before,

In practice, often average over all  with  to stabilize computation.

With  and  in hand, we can make a prediction on any datapoint  ,



SVMs: Understanding further  

Support vectors are  such that  .

They are the set of points which satisfy one of the following: 

1. they are tight with respect to the large margin constraint, 
2. they do not satisfy the large margin constraint,
3. they are misclassified.

when , and thus the point is  away from the hyperplane.

when  , the point is classified correctly but does not satisfy the large margin constraint.

when  , the point is misclassified.

One potential drawback of kernel methods: non-parametric, need to potentially keep all the training points.

For SVM though, very often  .



Linear Kernel and Polynomial Kernel  

Linear kernel does nothing.

Data may become linearly separable when lifted to the high-dimensional feature space! That's what polynomial 
kernel does.

Gaussian Kernel  

For some  .This is also parameterized as 

For some  . What does the decision boundary look like? What is the effect of  ?

If  is larger, the boundary will be much local (focus on local information).  If  is smaller, it will be more global.

Note that the prediction is of the form:

Summary  

SVM: max-margin linear classifier

Primal (equivalent to minimizing  regularized hinge loss):

Dual (kernelizable, reveals what training points are support vectors):
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